As an infrastructure, data & AI (Artificial Intelligence), and digital & app innovation Microsoft Solutions Partner, Fractal has been a key player in the artificial intelligence and machine learning space since 2000. We leverage our deep expertise in AI, engineering, and design to build custom solutions leveraging Artificial Intelligence, Machine Learning, Deep Learning, or any other technology required to solve unique business challenges.
With deep expertise in building AI-driven solutions for a wide variety of use cases, such as automatically discovering new customer segments, enabling more cost-effective maintenance by identifying failing equipment, and SKU (Stock Keeping Unit) assortment and promotion optimization, Fractal can support any organization’s AI-related goals and initiatives.
Fractal leverages a multitude of AI and Machine Learning services, such Azure Machine Learning, to build and deploy custom-made models and algorithms to create quick, scalable, and cost-efficient solutions for unique business challenges.
Over the years, Fractal has leveraged Azure AI/ML technologies in the cloud and at the edge to help businesses solve real-world challenges, such as creating a more efficient supply chain through intelligent supply chain optimization, tearing down data silos to enable superior marketing personalization, automating inefficient or manual processes, and more.
Artificial intelligence, machine learning, and deep learning explained
Artificial intelligence
Artificial intelligence (AI) has become a common buzzword in the technology and IT industries in recent years. While AI solutions capable of learning via machine learning models are increasingly common, AI itself refers to a technology designed to mimic human intelligence or otherwise perform actions a human normally would. AI leverages data and algorithms to grant machines the ability to perform specific tasks, such as an interactive chatbot capable of conducting internet searches and return results based on user queries.
Businesses across virtually any industry, whether it be healthcare, technology, retail & CPG, energy, or anything in between, can take advantage of AI’s advanced computing and analytical capabilities to solve problems and improve performance.
Machine learning
Frequently used in conjunction with AI solutions to inform one another, Machine learning (ML) is a type of technology designed to make intelligent decisions based on previous inputs’ outcomes.
Machine Learning leverages algorithmic models trained by being fed data rather than programming each step individually. This enables ML models to learn and adapt to provide different results and outcomes based on different inputs. A well-trained model can identify minor variances between a wide range of inputs and act intelligently based on those variances.
Example use cases for ML include performing predictive maintenance, forecasting demand, identifying new customer segments, personalizing marketing, and sales offerings for customers, and more.
Deep Learning (Deep Neural Networks)
Deep Learning (DL) is an evolution of machine learning techniques inspired by the architecture of human neural networks.
These artificial deep neural networks (DNN) leverage vast amounts of data and hidden layers (from a handful to hundreds, hence “deep”) to make connections and weigh inputs, allowing them to solve more complex problems than traditional statistically ML capabilities would allow. Deep neural networks are particularly adept at identifying unstructured data patterns, such as sound, images, and video.
Examples of use cases for DL include image analysis, voice recognition or synthesis, machine translation, recommendation engines, predictive analysis, and many more.
Autonomous Systems
Autonomous Systems are a subset of deep learning-powered AI solutions.
Autonomous Systems combine the power of Machine Teaching, Deep Reinforcement Learning (DRL), and simulations to solve real-world complex business process challenges across use cases and industries.
Azure Cognitive Search
Cognitive Search, formerly known as Azure search, is a powerful AI-powered API that uses the same integrated Microsoft natural language stack that Bing and Office have used for more than a decade. It also leverages AI services across vision, language, and speech.
Cognitive Search enriches information to enable new use cases for common business processes. There are many applications for the service and these use cases are the most impactful ones:
- – Form automation: Automatically ingest manually written forms into an existing business process, reducing error-prone human data entry
- – Enterprise-level search & process automation: Applicable to many use cases, it can for instance be used for plagiarism detection
- – Specific domain mappings for data extraction & analytics
Wondering if Cognitive Search is the right solution for your business challenge? Contact us and our experts will help you find out if it is and what the best implementation option can be.